OnMeromorphicSolutions ofaCertainType ofSystemofComplex Differential -Difference equations

A.TANUJA

Abstract

In this article, we study meromorphic solutions of the type of system of complex differential and difference equation of the following form $$
\begin{aligned} & \sum_{j=1}^{n}\left[\alpha_{1 j}(z) f_{1}^{\left(\lambda_{1 j}\right)}\left(z+c_{j}\right)+\beta_{1 j}(z) f_{1}^{m}(z)\right]=R_{2}\left(z, f_{2}(z)\right), \\ & \sum_{j=1}^{n}\left[\alpha_{2 j}(z) f_{2}^{\left(\lambda_{2 j}\right)}\left(z+c_{j}\right)+\beta_{2 j}(z) f_{2}^{m}(z)\right]=R_{1}\left(z, f_{1}(z)\right) . \end{aligned}
$$

Where $\lambda_{i j}(\mathrm{j}=1,2, \ldots \mathrm{n} ; \mathrm{i}=1,2)$ are finite non-negative integers and $c_{j}(\mathrm{j}=1,2, \ldots \mathrm{n})$ are distinct, nonzero complex numbers. $\alpha_{i j}(z), \beta_{i j}(z)(\mathrm{j}=1,2, \ldots \mathrm{n})$ are small functions relative to $f_{i}(\mathrm{z})(\mathrm{i}=1,2)$ respectively, $R_{i}(\mathrm{z}, \mathrm{f}(\mathrm{z}))(\mathrm{i}=1,2)$ are rational in $f_{i}(\mathrm{z})(\mathrm{i}=1,2)$ with coefficients which are small functions of $f_{i}(\mathrm{z})(\mathrm{i}=1,2)$ respectively.

Key words and phrases.Nevanlinna theory; differential-difference equations; meromorphic functions.

1. INTRODUCTION

In this article, we assume that the reader is familiar with standard symbols and fundamental results of Nevanlinnna theory. A differential polynomial of $\mathrm{f}(\mathrm{z})$ means that it is a polynomial in $f(z)$ and its derivatives with small functions of $f(z)$ as coefficients. A differential-difference polynomial of $\mathrm{f}(\mathrm{z})$ means that it is a polynomial in $f(z)$, its derivatives and its shifts $f(z+c)$ with small functions of $f(z)$ as coefficients. A meromorphic function $a(z)$ is called a small functions of $\mathrm{f}(\mathrm{z})$ if and only if $\mathrm{T}(\mathrm{r}, \mathrm{a}(\mathrm{z}))=\mathrm{S}(\mathrm{r}, \mathrm{f})$. Let c be a fixed, non-zero complex number $\Delta_{c} f(z)=f(z+c)-f(z)$ and $\Delta_{c}^{n} \mathrm{f}(\mathrm{z})=\Delta_{c}\left(\Delta_{c}^{n-1} \mathrm{f}(\mathrm{z})\right)=\Delta_{c}^{n-1} \mathrm{f}(\mathrm{z}+\mathrm{c})-\Delta_{c}^{n-1} \mathrm{f}(\mathrm{z})$ for each integer $\mathrm{n} \geq 2$. In order to simplify our notation, we shall use the same notation Δ for both a general c and when $\mathrm{c}=$ 1. Equations written with the above difference operations $\Delta_{c}^{n} \mathrm{f}(\mathrm{z})$ are difference equations.

In 2000, Ablowitz[1] proved some results on the classical Malmquist type theorem of the complexdifference equations by applying Nevanlinna theory. They obtained a typical results as follows.

Theorem A. If a complex difference equation

$$
\begin{aligned}
& \mathrm{f}(\mathrm{z}+1)+\mathrm{f}(\mathrm{z}-1)=\mathrm{R}(\mathrm{z}, \mathrm{f}(\mathrm{z})) \\
& =\frac{a_{0}(z)+a_{1}(z) f(\mathrm{z})+\cdots+a_{p}(z) f(z)^{p}}{b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{p}(z) f(z)^{q}}
\end{aligned}
$$

with polynomial coefficients $a_{i}(\mathrm{i}=1,2, \ldots, \mathrm{p})$ and $a_{j}(\mathrm{j}$ $=1,2, \ldots, q$), admits a transcendental meromorphic solution of finite order, then $\mathrm{d}=\max \{\mathrm{p}, \mathrm{q}\} \leq 2$.

One year later, Heittokangas[5] extended and improved the above result to the case of higher-order difference equations of more general type. They got the following result.

Theorem B. Let $c_{1}, c_{2}, \ldots, c_{n} \in C \backslash\{0\}$. If the difference equation

$$
\begin{aligned}
& \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}\left(\mathrm{z}+\mathrm{c}_{\mathrm{i}}\right)=\mathrm{R}(\mathrm{z}, \mathrm{f}(\mathrm{z})) \\
& =\frac{a_{0}(z)+a_{1}(z) f(z)+\cdots+a_{p}(z) f(z)^{p}}{b_{0}(z)+b_{1}(z) f(z)+\cdots+b_{p}(z) f(z)^{q}}
\end{aligned}
$$

with polynomial coefficients $a_{i}(\mathrm{i}=1,2, \ldots, \mathrm{p})$ and $b_{j}(\mathrm{j}=$ $1,2, \ldots, q)$, admits atranscendental meromorphic solution of finite order, then $d=\max \{p, q\} \leq n$.

In [8], Laine et al. obtained Tumura-Clunie theorem about the complex differenceequation of the form

$$
\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}}(\mathrm{z}) \mathrm{f}\left(\mathrm{z}+\mathrm{c}_{\mathrm{i}}\right)=\mathrm{R}(\mathrm{z}, \mathrm{f}(\mathrm{z}))=\frac{\mathrm{P}(\mathrm{z}, \mathrm{f}(\mathrm{z}))}{\mathrm{Q}(\mathrm{z}, \mathrm{f}(\mathrm{z}))^{\prime}}
$$

where the coefficients $\alpha_{i}(\mathrm{z})(\mathrm{i}=1,2, \ldots, \mathrm{n})$ are nonvanishing small functions relative to $f(z)$ and $P(z, f(z))$, $\mathrm{Q}(\mathrm{z}, \mathrm{f}(\mathrm{z}))$ are relating prime polynomials in $\mathrm{f}(\mathrm{z})$ over the field of small functions relative to $f(z)$.

Theorem C. Suppose that $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ are distinct, nonzero complex numbers and that $f(z)$ is a transcendental meromorphic solution of the last difference equation. Moreover, we assume that q $=\operatorname{deg}_{f} Q>0$,

$$
\mathrm{n}=\max \{\mathrm{p}, \mathrm{q}\}=\max \left\{\operatorname{deg}_{f} P, \operatorname{deg}_{f} Q\right\},
$$

and that, without restricting generality, Q is a monic polynomial. If there exist $a \in[0, n)$ such that for all r sufficiently large,

$$
\bar{N}\left(r, \sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}}(\mathrm{z}) \mathrm{f}\left(\mathrm{z}+\mathrm{c}_{\mathrm{i}}\right)\right) \leq \alpha \bar{N}(r+C, \mathrm{f}(\mathrm{z}))+S(r, f),
$$

whereC $=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|, \ldots\left|c_{n}\right|\right\}$, then either the order $\rho(\mathrm{f})=+\infty$, or

$$
\mathrm{Q}(\mathrm{z}, \mathrm{f}(\mathrm{z}))=(\mathrm{f}(\mathrm{z})+\mathrm{h}(\mathrm{z}))^{\mathrm{q}}
$$

where $h(z)$ is a small meromorphic function relative to $f(z)$.

In 2015, Haichou LI and LingyunGao[6], proved the following results, whichgeneralize the above related results to systems of complex differential and differenceequations.

Theorem D. Let $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ be distinct, nonzero complex numbers and supposethat $\left(\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})\right.$) is a transcendental meromorphic solution of the following system

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{1 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{1}^{\left(\lambda_{1 j}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)=\mathrm{R}_{2}\left(\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})\right) \\
& =\frac{a_{10}(z)+a_{11}(z) f_{2}(z)+\cdots+a_{1 p_{2}}(z) f_{2}(z)^{p_{2}}}{b_{10}(z)+b_{11}(z) f_{2}(z)+\cdots+b_{1 q_{2}}(z) f_{2}(z)^{q_{2}}},
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{2 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{2}^{\left(\lambda_{2 \mathrm{j}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)=\mathrm{R}_{1}\left(\mathrm{z}, \mathrm{f}_{1}(\mathrm{z})\right) \\
& =\frac{a_{20}(z)+a_{21}(z) f_{1}(z)+\cdots+a_{2 p_{1}}(z) f_{1}(z)^{p_{1}}}{b_{20}(z)+b_{21}(z) f_{1}(z)+\cdots+b_{2 q_{1}}(z) f_{1}(z)^{q_{1}}}
\end{aligned}
$$

with coefficients
$\alpha_{\mathrm{ij}}(\mathrm{z})(\mathrm{i}=1,2 ; \mathrm{j}=1,2, \ldots, \mathrm{n}), \mathrm{a}_{\mathrm{ij}}\left(\mathrm{j}=1,2, \ldots, \mathrm{p}_{\mathrm{i}} ; \mathrm{i}=\right.$ $1,2)$ and $b_{i j}(j=1,2, . ., q ; i=1,2)$ are small functions relative to $f_{i}(z)(i=1,2)$, respectively, where $\lambda_{i j}(\mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=1,2)$ are finite non-negative integers, and denote

$$
\begin{gathered}
d_{i}=\operatorname{deg}_{f_{i}} R_{i}\left(z, f_{i}(z)\right)=\max \left\{p_{i}, q_{i}\right\} ; \\
\lambda_{i}=\sum_{j=1}^{n}\left(\lambda_{i j}+1\right), i=1,2 .
\end{gathered}
$$

If the order $\rho\left(\mathrm{f}_{\mathrm{i}}\right)(\mathrm{i}=1,2)$ are finite, then $\mathrm{d}_{1} \mathrm{~d}_{2} \leq \lambda_{1} \lambda_{2}$.

Theorem E. Let ($\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})$) be a transcendental meromorphic solution of thefollowingsystem

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{1 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{1}^{\left(\lambda_{1 j}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)=\mathrm{R}_{2}\left(\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})\right)=\frac{P_{2}\left(\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})\right)}{Q_{2}\left(\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})\right)^{\prime}} \\
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{2 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{2}^{\left(\lambda_{2 \mathrm{j}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)=\mathrm{R}_{1}\left(\mathrm{z}, \mathrm{f}_{1}(\mathrm{z})\right)=\frac{P_{1}\left(\mathrm{z}, \mathrm{f}_{1}(\mathrm{z})\right)}{Q_{1}\left(\mathrm{z}, \mathrm{f}_{1}(\mathrm{z})\right)}
\end{aligned}
$$

where $\lambda_{i j}(\mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=1,2)$ are finite non-negative integers, and $\mathrm{c}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{n})$ are distinct, nonzero complex numbers, $\alpha_{\mathrm{ij}}(\mathrm{z})(\mathrm{i}=1,2 ; \mathrm{j}=1,2, \ldots, \mathrm{n})$ are small functions relative to $f_{i}(z)(i=1,2)$ respectively. $P_{i}(z$, $\left.f_{i}(z)\right), Q_{i}\left(z, f_{i}(z)\right)$ are relating prime polynomials in $f_{i}(z)$ over the field of small functions relative to $f_{i}(z)(i=1,2)$, denote $\mathrm{n}_{\mathrm{i}}=\max \left\{\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right\}=\max \left\{\operatorname{deg}_{f_{i}} P_{i}, \operatorname{deg}_{f_{i}} Q_{i}\right\}$, $\lambda_{i}=\sum_{j=1}^{n}\left(\lambda_{i j}+1\right)(\mathrm{i}=1,2)$. Moreover, we assume that $\mathrm{q}_{\mathrm{i}}=\operatorname{deg}_{f_{i}} Q_{i}>0(\mathrm{i}=1,2)$, and that, without restricting generality, $\mathrm{Q}_{\mathrm{i}}(\mathrm{i}=1,2)$ are both monic polynomials. If there exist $\beta_{i} \in\left[0, \mathrm{n}_{\mathrm{i}}\right)(\mathrm{i}=1,2)$ such that for all r sufficiently large,

$$
\bar{N}\left(r, \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{ij}} \mathrm{f}_{\mathrm{i}}^{\left(\mathrm{\lambda}_{\mathrm{ij}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)\right) \leq \beta_{i} \bar{N}\left(r+C, \mathrm{f}_{\mathrm{i}}(\mathrm{z})\right)+S\left(r, f_{\mathrm{i}}\right)
$$

($i=1,2$), where $\mathrm{C}=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|, \ldots\left|c_{n}\right|\right\}$.

Then either at least one of the orders $\rho\left(\mathrm{f}_{\mathrm{i}}\right)=\infty,(\mathrm{i}=1$, 2)is true; or

$$
\left.\mathrm{Q}_{\mathrm{i}}\left(\mathrm{z}, \mathrm{f}_{\mathrm{i}}(\mathrm{z})\right)=\left(\mathrm{f}_{\mathrm{i}}(\mathrm{z})+\mathrm{h}_{\mathrm{i}}(\mathrm{z})\right)_{\mathrm{i}}^{\mathrm{q}} \mathrm{i}=1,2\right),
$$

where $h_{i}(z)(i=1,2)$ are small meromorphic functions relative to $f_{i}(z)(i=1,2)$, respectively.

Theorem F. Let $c_{1}, c_{2}, \ldots, c_{n}$ be distinct, nonzero complex numbers, and suppose ($\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})$) is a transcendental meromorphic solution of the system of differential and difference equations

$$
\begin{aligned}
& \sum_{j=1}^{n} \alpha_{1 j}(z) f_{1}^{\left(\lambda_{1 j}\right)}\left(z+c_{j}\right)=f_{2}(P(z)), \\
& \sum_{j=1}^{n} \alpha_{2 j}(z) f_{2}^{\left(\lambda_{2 j}\right)}\left(z+c_{j}\right)=f_{1}(P(z))
\end{aligned}
$$

where $\lambda_{i j}(\mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=1,2)$ are finite non-negative integers, and $\alpha_{i j}(i=1,2 ; j=1,2, \ldots, n)$ are small functions relative to $\mathrm{f}_{\mathrm{i}}(\mathrm{z})(\mathrm{i}=1,2)$ respectively, $\lambda_{i}=$ $\sum_{j=1}^{n}\left(\lambda_{i j}+1\right)(\mathrm{i}=1,2), \mathrm{p}(\mathrm{z})$ is a polynomial of degree $\mathrm{k} \geq 2$ and that $\lambda_{i} \geq k$. Then, given $\varepsilon>0$, we have $\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)+\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)=\mathrm{O}((\operatorname{logr}))^{\alpha+\varepsilon}$, where $\alpha=\frac{\log \lambda}{\log k}, \lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}$.

In this paper, we consider the type of system of complex differential-difference equations of the following form

$$
\begin{gathered}
\sum_{j=1}^{n}\left[\alpha_{1 j}(z) f_{1}^{\left(\lambda_{1 j}\right)}\left(z+c_{j}\right)+\beta_{1 j}(z) f_{1}^{m}(z)\right] \\
=R_{2}\left(z, f_{2}(z)\right) \\
\sum_{j=1}^{n}\left[\alpha_{2 j}(z) f_{2}^{\left(\lambda_{2 j}\right)}\left(z+c_{j}\right)+\beta_{2 j}(z) f_{2}^{m}(z)\right]=R_{1}\left(z, f_{1}(z)\right)
\end{gathered}
$$

where $\lambda_{i j}(\mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=1,2)$ are finite nonnegative integers, and $\mathrm{c}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{n})$ are distinct, nonzero complex numbers, $\alpha_{\mathrm{ij}}(\mathrm{z}), \beta_{\mathrm{ij}}(\mathrm{z})(\mathrm{i}=1,2 ; \mathrm{j}=1$, $2, \ldots, n)$ are small functions relative to $\mathrm{f}_{\mathrm{i}}(\mathrm{z})(\mathrm{i}=1,2)$ respectively, $\quad \mathrm{R}_{\mathrm{i}}\left(\mathrm{z}, \mathrm{f}_{\mathrm{i}}(\mathrm{z})\right)$, $\quad(\mathrm{i}=1,2)$ are rational in $\mathrm{f}_{\mathrm{i}}(\mathrm{z})(\mathrm{i}=1,2)$ respectively.

Here we obtain the following result, which generalize the above related results to systems of complex differential and difference equations.

Theorem 1.1. Let $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ be distinct, nonzero complex numbers and suppose that ($\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})$) is a transcendental meromorphic solution of the following system
(1.1)

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\alpha_{1 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{1}^{\left(\lambda_{1 \mathrm{j}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)+\beta_{1 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{1}^{\mathrm{m}}(\mathrm{z})\right] \\
& =\mathrm{R}_{2}\left(\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})\right) \\
& =\frac{a_{10}(z)+a_{11}(z) f_{2}(z)+\cdots+a_{1 p_{2}}(z) f_{2}(z)^{p_{2}}}{b_{10}(z)+b_{11}(z) f_{2}(z)+\cdots+b_{1 q_{2}}(z) f_{2}(z)^{q_{2}}}
\end{aligned}
$$

$$
\begin{align*}
& \sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\alpha_{2 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{2}^{\left(\lambda_{2 \mathrm{j}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)+\beta_{2 \mathrm{j}}(\mathrm{z}) \mathrm{f}_{2}^{\mathrm{m}}(\mathrm{z})\right] \tag{1.2}\\
& =\mathrm{R}_{1}\left(\mathrm{z}, \mathrm{f}_{1}(\mathrm{z})\right) \\
& =\frac{a_{20}(z)+a_{21}(z) f_{1}(z)+\cdots+a_{2 p_{1}}(z) f_{1}(z)^{p_{1}}}{b_{20}(z)+b_{21}(z) f_{1}(z)+\cdots+b_{2 q_{1}}(z) f_{1}(z)^{q_{1}}}
\end{align*}
$$

with coefficients $\alpha_{\mathrm{ij}}(\mathrm{z}), \beta_{\mathrm{ij}}(\mathrm{z})(\mathrm{i}=1,2 ; \mathrm{j}=$ $1,2, \ldots, n), a_{i j}\left(j=1,2, \ldots, p_{i} ; i=1,2\right)$ and $b_{i j}(j=$ $1,2, . ., q ; i=1,2)$ are small functions relative to $f_{i}(z)(i$ $=1,2)$, respectively, where $\lambda_{i j}(j=1,2, \ldots, n ; i=$
1,2) are finite non-negative integers, and denote

$$
d_{i}=\operatorname{deg}_{f_{i}} R_{i}\left(z, f_{i}(z)\right)=\max \left\{p_{i}, q_{i}\right\} ;
$$

$$
\lambda_{i}=\sum_{j=1}^{n}\left(\lambda_{i j}+1\right), i=1,2
$$

If the order $\rho\left(\mathrm{f}_{\mathrm{i}}\right)(\mathrm{i}=1,2)$ are finite, then

$$
\mathrm{d}_{1} \mathrm{~d}_{2} \leq\left(\lambda_{1}+m\right)\left(\lambda_{2}+m\right)
$$

Theorem 1.2. Let $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$ be distinct, nonzero complex numbers, and suppose ($\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})$) is a transcendental meromorphic solution of the system of differential and difference equations

$$
\begin{equation*}
\sum_{j=1}^{n}\left[\alpha_{1 j}(z) f_{1}^{\left(\lambda_{1 j}\right)}\left(z+c_{j}\right)+\beta_{1 j}(z) f_{1}^{m}(z)\right]=f_{2}(P(z)) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{n}\left[\alpha_{2 j}(z) f_{2}^{\left(\lambda_{2 j}\right)}\left(z+c_{j}\right)+\beta_{2 j}(z) f_{2}^{m}(z)\right]=f_{1}(P(z)) \tag{1.4}
\end{equation*}
$$

where $\lambda_{i j}(\mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i}=1,2)$ are finite non-negative integers, and $\alpha_{\mathrm{ij}}(\mathrm{z}), \beta_{\mathrm{ij}}(\mathrm{z})(\mathrm{i}=1,2 ; \mathrm{j}=1,2, \ldots, \mathrm{n})$ are small functions relative to $f_{i}(z)(i=1,2)$ respectively, denote $\lambda_{i}=\sum_{j=1}^{n}\left(\lambda_{i j}+1\right)(\mathrm{i}=1,2), \mathrm{p}(\mathrm{z})$ is a polynomial of degree $\mathrm{k} \geq 2$ and that $\lambda_{i} \geq k$. Then, given $\varepsilon>0$, we have
$\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)+\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)=\mathrm{O}((\operatorname{logr}))^{\alpha+\varepsilon}$,
where $\frac{\log \lambda}{\log k}, \lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}$.

2. SOME LEMMAS

Lemma 2.1. ([7]) Let $\mathrm{f}(\mathrm{z})$ be a meromorphic function. Then for all irreducible rational functions in f ,

$$
\mathrm{R}(\mathrm{z}, \mathrm{f}(\mathrm{z}))=\frac{P(z, f(\mathrm{z}))}{Q(\mathrm{z}, f(\mathrm{z}))}=\frac{\sum_{i=0}^{p} a_{i}(z) f^{i}}{\sum_{j=0}^{a} b_{j}(z) f^{j}},
$$

such that the meromorphic coefficients $a_{i}(z)$, $b_{j}(z)$ satisfy
$\mathrm{T}\left(\mathrm{r}, a_{i}(z)\right)=\mathrm{S}(\mathrm{r}, \mathrm{f}), \mathrm{i}=0,1,2, \ldots, \mathrm{p}$,
$\mathrm{T}\left(\mathrm{r}, b_{j}(z)\right)=\mathrm{S}(\mathrm{r}, \mathrm{f}), \mathrm{j}=0,1,2, \ldots, \mathrm{q}$,
one has $(\mathrm{r}, \mathrm{R}(\mathrm{z}, \mathrm{f}))=\max \{\mathrm{p}, \mathrm{q}\} \mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})$.

Lemma 2.2. ([9]) If $f(\mathrm{z})$ is a transcendental meromorphic function, then

$$
\mathrm{T}\left(\mathrm{r}, f^{(k)}\right) \leq(\mathrm{k}+1) \mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}) .
$$

Lemma 2.3. ([2]) Let $\mathrm{f}(\mathrm{z})$ be a meromorphic function with order $\rho=\rho(\mathrm{f}), \rho<+\infty$, and let c be a fix nonzero complex number, then for each $\varepsilon>0$, one has

$$
\mathrm{T}(\mathrm{r}, \mathrm{f}(\mathrm{z}+\mathrm{c}))=\mathrm{T}(\mathrm{r}, \mathrm{f}(\mathrm{z}))+\mathrm{O}\left(r^{\rho-1+\varepsilon}\right)+\mathrm{O}(\log \mathrm{r}) .
$$

Lemma 2.4. ([4]) Let f be a transcendental meromorphic function, and $p(z)=a_{k} z^{k}+a_{k-1} z^{k-1}+\ldots+a_{1} z+a_{0}, a_{k} \neq 0$ be a nonconstant polynomial of degree k . Given 0 $<\delta<\left|a_{k}\right|$, denote $\alpha=\left|a_{k}\right|+\delta$ and $\beta=\left|a_{k}\right|-\delta$. Then given $\varepsilon>0$ and $\mathrm{a} \in \mathrm{C} \cup\{\infty\}$, one has

$$
\operatorname{kn}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{a}, \mathrm{f}\right) \leq \mathrm{n}(\mathrm{r}, \mathrm{a}, \mathrm{f}(\mathrm{p}(\mathrm{z}))) \leq \operatorname{kn}\left(\alpha \mathrm{r}^{\mathrm{k}}, \mathrm{a}, \mathrm{f}\right)
$$

$\mathrm{N}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{a}, \mathrm{f}\right)+\mathrm{O}(\operatorname{logr}) \leq \mathrm{N}(\mathrm{r}, \mathrm{a}, \mathrm{f}(\mathrm{p}(\mathrm{z}))) \leq \mathrm{N}\left(\alpha \mathrm{r}^{\mathrm{k}}, \mathrm{a}, \mathrm{f}\right)+$ O(logr),
$(1-\varepsilon) \mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}\right) \leq \mathrm{T}(\mathrm{r}, \mathrm{f}(\mathrm{p}(\mathrm{z}))) \leq(1+\varepsilon) \mathrm{T}\left(\alpha \mathrm{r}^{\mathrm{k}}, \mathrm{f}\right)$ for all r large enough.
and bounded in every finite interval, and suppose that $\mathrm{f}(\alpha$ $\left.\mathrm{r}^{\mathrm{k}}\right) \leq \mathrm{Af}(\mathrm{r})+\mathrm{B}$ holds for all r large enough, where $\alpha>0$, $\mathrm{k}>1, \mathrm{~A}>1$ and B are real constants. Then $\mathrm{f}(\mathrm{r})=\mathrm{O}\left((\operatorname{logr})^{\beta}\right)$,
where $\beta=\frac{\log A}{\log k}$.

3. PROOFS OF THE THEOREMS.

In this section we present the proofs of the main results.

Proof of Theorem 1.1. Since the coefficients
$\alpha_{i j}(z), \beta_{i j}(z)(i=1,2 ; j=1,2, \ldots, n), a_{i j}\left(j=1,2, \ldots, p_{i} ;\right.$ $\mathrm{i}=1,2)$ and $\mathrm{b}_{\mathrm{ij}}\left(\mathrm{j}=1,2, \ldots, \mathrm{q}_{\mathrm{i}} ; \mathrm{i}=1,2\right)$ in system (1.1) and (1.2) are small functions relative to $f_{i}(z)(i=1,2)$, respectively, that is,
$T\left(r, \alpha_{i j}\right)=S\left(r, f_{i}\right), i=1,2 ; j=1,2, \ldots, n ;$
$T\left(r, \beta_{i j}\right)=S\left(r, f_{i}\right), i=1,2 ; j=1,2, \ldots, n ;$
$T\left(r, a_{i j}\right)=S\left(r, f_{i}\right), i=1,2 ; j=1,2, \ldots, p_{i} ;$ $\mathrm{T}\left(\mathrm{r}, \mathrm{b}_{\mathrm{ij}}\right)=\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{\mathrm{i}}\right), \mathrm{i}=1,2 ; \mathrm{j}=1,2, \ldots, \mathrm{q}_{\mathrm{i}}$
hold for all r outside of a possible exceptional set E_{1} with finite logarithmic measure $\int_{\mathrm{E}_{1}} \frac{d r}{r}<+\infty$. Let $\left(\mathrm{f}_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})\right.$) be a finite order meromorphic solution of (1.1) and (1.2). Now equating the Nevanlinna characteristic function on both sides of each equation of (1.1) and (1.2), and applying Lemmas 3.1, 3.2 and 3.3, we have
$\mathrm{d}_{1} \mathrm{~T}\left(\mathrm{r}, \mathrm{f}_{2}\right)=\mathrm{T}\left(\mathrm{r}, \mathrm{R}_{2}\left(\mathrm{z}, \mathrm{f}_{2}\right)\right)+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)$
$=T\left(r, \sum_{j=1}^{n}\left[\alpha_{1 j}(z) f_{1}^{\left(\lambda_{1 j}\right)}\left(z+c_{j}\right)+\beta_{1 j}(z) f_{1}^{m}(z)\right]\right.$
$+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)$

$$
\leq \sum_{j=1}^{n}\left[\left(\lambda_{1 j}+1\right) \mathrm{T}\left(r, \mathrm{f}_{1}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)\right)+\mathrm{mT}\left(\mathrm{r}, \mathrm{f}_{1}(\mathrm{z})\right)\right]
$$

$+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{\mathrm{z}}\right)$

$$
\begin{aligned}
&=\sum_{j=1}^{n}\left[\left(\lambda_{1 j}\right.\right.\left.+\mathrm{m}+1) T\left(r, f_{1}(z)\right)\right]+O\left(r^{\rho-1+\varepsilon}\right) \\
&+O(\log r)+S\left(r, f_{2}\right) \\
&=\left(\lambda_{1}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}(\mathrm{z})\right)+O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)+S\left(r, f_{2}\right) .
\end{aligned}
$$

Lemma 2.5. ([3]) Let $\mathrm{f}:\left(\mathrm{r}_{0},+\infty\right) \rightarrow(0,+\infty)$ be positive

So there is
$\left(\mathrm{d}_{1}+\mathrm{o}(1)\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right) \leq\left(\lambda_{1}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}(\mathrm{z})\right)+O\left(r^{\rho-1+\varepsilon}\right)$

$$
+O(\log r)
$$

Similarly, we have
$\left(\mathrm{d}_{2}+\mathrm{o}(1)\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right) \leq\left(\lambda_{2}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}(\mathrm{z})\right)+O\left(r^{\rho-1+\varepsilon}\right)$

$$
+O(\log r)
$$

Thus, (3.1) times $\left(\mathrm{d}_{2}+\mathrm{o}(1)\right)$ and (3.2) times $\left(\lambda_{1}+\mathrm{m}\right)$ obtain respectively that
(3.3)
$\left(d_{2}+o(1)\right)\left(d_{1}+o(1)\right) T\left(r, f_{2}\right) \leq\left(\lambda_{1}+m\right) T\left(r, f_{1}\right)\left(d_{2}+o(1)\right)$ $+\left(\mathrm{d}_{2}+\mathrm{o}(1)\right)\left[O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)\right]$,
and
$\left(\lambda_{1}+\mathrm{m}\right)\left(\mathrm{d}_{2}+\mathrm{o}(1)\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)$

$$
\leq\left(\lambda_{1}+\mathrm{m}\right)\left(\lambda_{2}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)+\left(\lambda_{1}+\mathrm{m}\right)\left[O\left(r^{\rho-1+\varepsilon}\right)+O(\text { logr })\right]
$$

Therefore, from (3.3) and (3.4), we can have the following inequality
$\left(\mathrm{d}_{2}+\mathrm{o}(1)\right)\left(\mathrm{d}_{1}+\mathrm{o}(1)\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right) \leq\left(\lambda_{1}+\mathrm{m}\right)\left(\lambda_{2}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)$
$+\left(\lambda_{1}+m+\left(d_{2}+o(1)\right)\right)\left[O\left(r^{\rho-1+\varepsilon}\right)+\mathrm{O}(\operatorname{logr})\right]+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)$.

Dividing this by $\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)$ on both sides of the last inequality and letting $r \rightarrow \infty$ outside of a possible exceptional set E_{1} with finite logarithmic measure respectively, we have $\mathrm{d}_{1} \mathrm{~d}_{2} \leq\left(\lambda_{1}+\mathrm{m}\right)\left(\lambda_{2}+\mathrm{m}\right)$.Therefore, the proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Let ($f_{1}(\mathrm{z}), \mathrm{f}_{2}(\mathrm{z})$) be a transcendental meromorphic solution of system (1.3) and (1.4), and $p(z)=a_{k} z^{k}+a_{k-1} z^{k-1}+\ldots+a_{1} z+a_{0}, a_{k} \neq 0$ be a nonconstant polynomial of degree k. Given $0<\delta<\left|a_{k}\right|$,
denote $\alpha=\left|a_{k}\right|+\delta$ and $\beta=\left|a_{k}\right|-\delta$. Denoting again $\mathrm{C}=$ $\max \left\{\left|c_{i}\right|, \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$. According to system (1.3) and (1.4) and the last result of Lemma 2.4, for given $\varepsilon_{1}>0$, we have
$\left(1-\varepsilon_{1}\right) \mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{1}\right) \leq \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}(\mathrm{p}(\mathrm{z}))\right)$
$=T\left(r, \sum_{j=1}^{n}\left[\alpha_{2 j}(z) f_{2}^{\left(\lambda_{2 j}\right)}\left(z+c_{j}\right)+\beta_{2 j}(z) f_{2}^{m}(z)\right]+S\left(r, f_{2}\right)\right.$

$$
\leq \sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\mathrm{~T}\left(\mathrm{r}, \mathrm{f}_{2}^{\left(\lambda_{2 \mathrm{j}}\right)}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)\right)+\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}^{\mathrm{m}}(\mathrm{z})\right)\right]+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)
$$

$\leq \sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\left(\lambda_{2 \mathrm{j}}+1\right) \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\left(\mathrm{z}+\mathrm{c}_{\mathrm{j}}\right)\right)+\mathrm{mT}\left(\mathrm{r}, \mathrm{f}_{2}(\mathrm{z})\right)\right]+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)$

$$
\leq\left(\lambda_{2}+\mathrm{m}\right) \mathrm{T}\left(\mathrm{r}+\mathrm{C}, \mathrm{f}_{2}(\mathrm{z})\right)+\mathrm{S}\left(\mathrm{r}, \mathrm{f}_{2}\right)
$$

Since $\mathrm{T}(\mathrm{r}+\mathrm{C}, \mathrm{f}) \leq \mathrm{T}(\beta \mathrm{r}, \mathrm{f})$ holds for r large enough for $\beta>1$, we may assume r to be large enough to satisfy

$$
\left(1-\varepsilon_{1}\right) \mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{1}\right) \leq\left(\lambda_{2}+\mathrm{m}\right)(1+\varepsilon) \mathrm{T}\left(\beta \mathrm{r}, \mathrm{f}_{2}\right),
$$

outside a possible exceptional set of nite linear measure. By the standard reasoning to remove the exceptional set, we know that whenever $\mu>1$,
(3.5) $\quad\left(1-\varepsilon_{1}\right) \mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{1}\right) \leq\left(\lambda_{2}+\mathrm{m}\right)\left(1+\varepsilon_{1}\right) \mathrm{T}\left(\mu \beta \mathrm{r}, \mathrm{f}_{2}\right)$,
holds for all r large enough. Similarly, we also obtain
(3.6) $\quad\left(1-\varepsilon_{2}\right) \mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{2}\right) \leq\left(\lambda_{1}+\mathrm{m}\right)\left(1+\varepsilon_{2}\right) \mathrm{T}\left(\mu \beta \mathrm{r}, \mathrm{f}_{1}\right)$
holds for all r large enough. Taking $\varepsilon=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\} ; \lambda=$ $\max \left\{\lambda_{1}, \lambda_{2}\right\}$, and (3.5)+(3.6) assumes that
$(1-\varepsilon)\left[\mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{1}\right)+\mathrm{T}\left(\beta \mathrm{r}^{\mathrm{k}}, \mathrm{f}_{2}\right)\right] \leq(+\mathrm{m})(1+\varepsilon)[\mathrm{T}(\mu \beta \mathrm{r}$, $\left.\left.\mathrm{f}_{1}\right)+\mathrm{T}\left(\mu \beta \mathrm{r}, \mathrm{f}_{2}\right)\right]$.

Denote $\mathrm{t}=\mu \beta \mathrm{r}$, thus the last inequality may be written in the form

$$
\begin{aligned}
{\left[T\left(\frac{\beta}{(\mu \beta)^{k}} t^{k}, f_{1}\right)+\right.} & \left.T\left(\frac{\beta}{(\mu \beta)^{k}} t^{k}, f_{2}\right)\right] \\
& \leq \frac{(\lambda+m)(1+\varepsilon)}{(1-\varepsilon)}\left[T\left(t, f_{1}\right)+T\left(t, f_{2}\right)\right] .
\end{aligned}
$$

Therefore, by Lemma 2.5 and (3.7) we can get

$$
\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{1}\right)+\mathrm{T}\left(\mathrm{r}, \mathrm{f}_{2}\right)=\mathrm{O}\left((\operatorname{logr})^{r}\right)
$$

where $\gamma=\frac{\log (\lambda(1+\varepsilon) /(1-\varepsilon))}{\log k}=\frac{\log \lambda}{\log k}+o(1)$. Now denoting $\alpha=\frac{\log \lambda}{\log k}$, we can obtain the required form of Theorem 1.2 . Therefore, Theorem 1.2 is proved.

REFERENCES

[1] Ablowitz M J, Halburd R, Herbst B. On the extension of the Painlevle property to difference equations. Nonlinearity, 13(3)(2000), 889-905.
[2] Chiang Y M, Feng S J. On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J, 16(1)(2008), 105-129.
[3] Goldstein R. On meromorphic solution of meromorphic equations. Aeq Math, 1978, 18(1/2): 112157; 1971, 4(2): 357-364.
[4] Goldstein R. Someresults on factorisation of meromorphic functions. J London Math Soc, 1971,4(2): 357-364.
[5] Heittokangas J, Korhonen R, Laine I, Rieppo J, Tohge K. Complex difference equations of Malmquist type.Comput Methods Funct Theory, 1(1)2001, 27-39.
[6] Haichou LI and Lingyun Gao, On meromorphic solutions of a certain type of system of complex differential-difference equations.Acta Mathematica Scientia, 35B(1)2015, 195-206.
[7] Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: Walter de Gruyter, 1993.
[8] Laine I, Rieppo J, Silvennoinen H. Remarks on complex difference equations.Comput Methods Funct Theory, 5(1)2005, 77-88.
[9] Milloux H. Les Function Meromorphices et LeursDerivees. Paris: (French) ActualitesSciInd, 1940.
(Dr A.TANUJA) P.G.Department of Mathematics, K.L.E College, Bangalore-560 010,INDIA.

